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Improving Robotic Grasping Ability
Through Deep Shape Generation

Junnan Jiang1, Yuyang Tu2, Xiaohui Xiao3, Zhongtao Fu4, Jianwei Zhang2, Fei Chen†5, Miao Li†1

Abstract—Data-driven approaches have become a dominant
paradigm for robotic grasp planning. However, the performance
of these approaches is enormously influenced by the quality of the
available training data. In this paper, we propose a framework to
generate object shapes to improve the grasping dataset quality,
thus enhancing the grasping ability of a pre-designed learning-
based grasp planning network. In this framework, the object
shapes are embedded into a low-dimensional feature space using
an AutoEncoder (encoder-decoder) based structure network. The
rarity and graspness scores are defined for each object shape
using outlier detection and grasp-quality criteria. Subsequently,
new object shapes are generated in feature space that leverages
the original high rarity and graspness score objects’ features,
which can be employed to augment the grasping dataset. Finally,
the results obtained from the simulation and real-world experi-
ments demonstrate that the grasping ability of the learning-based
grasp planning network can be effectively improved with the
generated object shapes.

Index Terms—Data Augmentation, Shape Generation, Robotic
Grasping, Feature Embedding

I. INTRODUCTION

Grasping is a fundamental ability for robots. Despite sig-
nificant progress in the area of grasp planning, it is still a
difficult task to plan a grasp for unknown objects in general
[1], [2]. During the past decade, data-driven approaches have
demonstrated significant advantages over traditional model-
based approaches [3] in the grasp planning area. Since the
performance of data-driven approaches is greatly limited by
the quality of the available training data, how to improve
the quality of training data is one of the crucial questions
to improve the grasping ability.

The intuitive idea is to expand the size of the training
dataset. Numerous grasping datasets containing more shapes,
more annotated grasps and more sensory information have
been proposed [4]–[9] and are trying to include more diverse
data for network training. However, except for expensive
and time-consuming dataset collection, a well-trained grasp
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Fig. 1. Original and augmented data distribution comparison. We use t-SNE
[12] to project the shape feature vectors to a 2D plane, where the Euclidean
distances between scattered points represent their features’ similarity, and the
colors represent their graspness scores. We generate new data that leverages
the features of original high rarity and graspness shapes to improve the quality
of the dataset.

planning network on existing datasets may still fail when
facing some special pre-grasped objects. Simply adding a
small amount of “failed objects” to the original large amount
of training data is difficult to improve the quality of the
training dataset effectively, which further leads to only a small
improvement in the grasping ability of the grasp planning
network.

Another more efficient approach is data augmentation. Sim-
ilar to computer vision, there are also some data augmentation
methods applied in grasping datasets using random image
transformation or shape generation [10], [11]. However, the
effect of these random operations on grasping ability improve-
ment is not certain, and these operations also do not take into
account the grasp property. Furthermore, for a grasping dataset
shown in Fig. 1, where the Euclidean distances between
scattered points represent their shape similarity and the colors
represent their graspness scores defined in IV-A, the data
distribution may be duplicated in object shapes and uneven in
different graspness scores. Randomly augmenting the training
data, i.e., generating new data using the features of all data
equally, may lead to a larger amount of duplicate shapes and
higher uneven distribution of these shapes’ graspness scores,
which may result in grasp planning network overfitting on
these duplicate and uneven data and cannot generalize to other
unseen data.
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To address these issues, we augment the dataset for the
purpose of making it more diverse, and generate data lever-
aging the features of rare data in the original dataset. In
detail, an AutoEncoder-based network is firstly proposed to
encapsulate object shape information into a low-dimensional
feature space. In this feature space, shapes in the original
dataset can be effectively encoded, interpolated and generated.
Moreover, in this low-dimensional feature space, two grasp-
related metrics are proposed to find the rare data in the
grasping dataset. Finally, the features of these rare data are
used to generate new shapes that can further improve the
quality of the original dataset and thus improve the grasping
ability of a pre-defined learning-based grasp planning network.
The comparison between the original and augmented data
distribution is shown in Fig. 1: Our newly generated shapes
fill the vacant area of the original data distribution and cause
a more even graspness score distribution.

The main contributions of this paper are summarized as:

• An AutoEncoder-Critic network is proposed to map a
voxelized shape into a low-dimensional feature space.

• Two grasp-related metrics are proposed to find the rare
data in the grasping dataset.

• A systematic approach is proposed to generate new
shapes that can improve the grasping ability of a pre-
designed learning-based grasp planning network.

The remainder of this paper is structured as follows. Section
II presents related work in grasping datasets and data augmen-
tation. Section III describes the methodology of our whole data
augmentation pipeline, including an object shape encoding
method for shape generation, two grasp-related metrics for
shape selection, and an augmentation method by the generated
object shapes. Section IV describes both simulation and real-
world experiments, with a final discussion and conclusion in
Section V.

II. RELATED WORK

A. Grasping Dataset

With the great success achieved by data-driven grasp plan-
ning methods [1], many grasping datasets have been proposed
[4]–[9]. Though existing grasping algorithms can perform well
on one dataset, they may still fail when facing unseen objects.
Since optimizing the grasping network architectures requires
expert experience, it is more desirable to improve the grasping
dataset quality and retrain the network, such as expanding
the dataset with “failed objects” or performing some data
augmentation tricks. But it is still difficult to answer whether
newly added shapes will improve the dataset quality in terms
of enhancing the grasping ability. To solve this problem, the
EGAD dataset [8] methodically generates shapes with a richer
range of shape complexity and grasp difficulty. However, since
the shapes generated in EGAD are very different from existing
real-world shapes, it is more difficult for a pre-defined network
to learn a good grasping policy with an EGAD dataset than
with a real-world dataset. This means that the EGAD dataset
can only be used for evaluation, but is difficult to apply in
real-world scenarios.

B. Data Augmentation

Data augmentation [13], [14] is a prevalent approach in
data-driven approaches because it effectively improves the
quality of the dataset and reduces network overfitting prob-
lems. Handcrafted methods [15] have been widely used in
computer vision, such as shifting, scaling and rotating. Simi-
larly, randomly rotating and cropping images [10] or randomly
combining different shapes to generate a new shape [11]
can also be used to augment the grasping dataset. However,
since it is difficult to evaluate what these random operations
bring to the dataset, the effect of these dataset augmentation
methods can only be known after retraining the network on
the augmented dataset.

With the development of generation methods such as Au-
toEncoder [16] and generative adversarial network (GAN)
[17], data can be generated more flexibly and even with
specific objectives. DeVries et al. [18] augment different-
domain data in feature space only with the same AutoEncoder-
based network. Wang et al. [19] generate adversarial grasp
objects by evaluating the generated objects’ grasp difficulty
and regularizing the generation network to generate difficult-
to-grasp objects. Mitrano et al. [20] formalize data augmenta-
tion as an optimization problem and propose some objective
functions to sample better generated data for manipulation
tasks. Inspired by these methods, in this work we focus on
grasping dataset augmentation and generate data similar to the
rare data in a grasping dataset, thereby improving the grasping
ability for a pre-defined network.

III. OBJECT SHAPE ENCODING

To leverage shapes’ features of the original dataset and to
ensure that generated shapes are more realistic, we propose
an AutoEncoder-Critic (AE-Critic) network. The AutoEncoder
(AE) can embed object shapes into a low-dimensional feature
space to better generate shapes by interpolation, and the Critic
can regularize the generated shapes to be more realistic.

A. Network Architecture

In order to generate new shapes leveraging the features of
the original object shapes, we propose an AE-Critic network
and show its structure in Fig. 2. We use a voxel grid to
represent a shape, which maps a shape to a 64 × 64 × 64
binary matrix. The AutoEncoder [16] of AE-Critic contains
an Encoder and a Decoder. The Encoder maps a voxel grid
x to a 128-dimensional feature vector z, containing five
3D convolution layers and two fully connected layers. The
convolution layers use 4 × 4 × 4 kernel size and two strides,
with batch normalization and ReLU layers added in between,
mapping the voxel grid to a 512 × 4 × 4 × 4 sized feature
map. The fully connected layers have 32768 and 128 neurons
separately, and map the feature map to a 128-dim feature
vector. The Decoder mirrors the Encoder, maps a 128-dim
feature vector to a 64 × 64 × 64 reconstructed voxel grid x̂,
and contains two fully connected layers and five 3D transposed
convolution layers [21]. The layer configurations are the same
as the Encoder. Using AutoEncoder, we can generate new
shapes leveraging the original shapes’ features by changing
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their feature vectors, like interpolating between real samples.
In detail, based on the formula zmix = αz1 + (1 − α)z2, we
can obtain zmix by interpolating two feature vectors z1, z2,
which are encoded by two shapes x1, x2, with the interpolated
weight α. Then we decode the mixed feature vector zmix to
generate an interpolated shape x̂α. Theoretically, by changing
the interpolated pairs x1, x2 and weights α, we can generate
infinite interpolated shapes x̂α.

Fig. 2. AE-Critic network architecture. The Critic tries to estimate the
interpolated weight α corresponding to an interpolated shape and thus can
regularize the AutoEncoder (Encoder+Decoder) to generate more realistic
interpolated shapes by fooling the Critic to output a smaller interpolated
weight.

In addition, to make the shapes generated by interpolation
more realistic, we add a Critic inspired by Berthelot et
al. [22], which aims to estimate the interpolated weight α
corresponding to an interpolated shape x̂α, and to regularize
the training process of the AutoEncoder. In detail, the AE
is trained to generate shapes to fool the Critic to output a
smaller interpolated weight, which means that the Critic is
more willing to consider the interpolated input as a non-
interpolated original shape. Therefore, more realistic shapes
that are similar to the original shapes can be generated. The
structure of the Critic is similar to the Encoder, only with one
more fully connected layer to map the 128-dim feature vector
to a 1-dim interpolated weight.

B. Network Training

The Critic is trained to minimize the loss function given in
Eq. (1), its first term trains the Critic C to recover interpolation
weight α from interpolated voxel grid x̂α with mean square
loss. For the second term, γ is a scalar hyperparameter and x̂ is
a reconstructed voxel grid by AutoEncoder from an original
voxel grid x. This enforces the Critic C outputs 0 for non-
interpolated inputs, which means the mixture of the original
and reconstructed voxel grid in shape space but not in feature
space, thus making the Critic’s training process more stable.

LC = ||C(x̂α)− α||2 + ||C {γx+ (1− γ)x̂} ||2 (1)

The AutoEncoder is trained to minimize the loss function
given in Eq. (2), where LB represents binary cross-entropy
loss and λ is a scalar hyperparameter to balance the magnitude
of the two loss terms. Its first term trains the AutoEncoder to
generate a reconstructed voxel grid x̂ similar to the original
voxel grid x, the same as the original AutoEncoder training

process. The second term, serving as a regularization term,
encourages the interpolated voxel grid x̂α to fool the Critic to
output 0, which means that the Critic considers the generated
interpolated voxel grids to be realistic non-interpolated voxel
grids. And this can finally regularize the AutoEncoder to
generate more realistic voxel grids.

L(E,D) = LB(x̂, x) + λ||C(x̂α)||2 (2)

After the training process, for each object represented as a
voxel grid, our AE-Critic network can map it to a 128-dim
feature vector. To better visualize the distribution of all the
feature vectors, we use t-SNE [12] to project feature vectors
to a 2D plane. The distribution of shapes can be seen in
Fig. 1. As shown, it is clear that similar shapes are located
close to each other. Moreover, all the shapes are not uniformly
distributed in the space and there are many vacant areas, which
means no shapes are located there. These areas can be filled
by interpolated shapes. The next chapter will explain in detail
which vacant areas need to be filled to improve the grasping
ability of a given dataset.

IV. DATA AUGMENTATION FOR ROBOTIC GRASPING

The purpose of improving the quality of the grasping dataset
to improve the grasping ability is to allow the grasp planning
network to learn more diverse data. Therefore, we first define
rarity and graspness metrics for shapes, where the higher the
metric score, the rarer the data. Then, through the AE-Critic
network, new shapes are generated using the features of high-
scoring data, which are further used to augment the original
dataset. The whole grasping dataset augmentation pipeline is
shown in Fig. 4.

A. Shape Rarity and Graspness Metrics

Shape Rarity:
We assume that rare shapes are those whose features are

distinct from others. Thus, we use outlier detection [23] to
evaluate each feature vector. For one shape which is rarer,
the score of outlier detection is higher. In detail, we use
the Euclidean distance dist between two feature vectors to
measure their similarity. For one shape O, we select its k-
nearest shapes Nk(O), and the local reachability density D
can be defined by Eq. (3), which is the reciprocal of the mean
of distances between feature vectors from shape O to its k
neighbors. This can be used to measure the density around
each shape; higher scores indicate greater density.

D(O) =
1

1
k

∑
P∈Nk(O) dist(O,P )

(3)

With the local reachability density metric D, we can com-
pute the score of local outlier factor R for each shape’s rarity
score by Eq. (4). It is the average ratio of the D of each shape
O to the D of its k nearest neighbors P. A lower object O’s
D score and higher D scores of its neighbors will result in a
higher R score, indicating that shape O is rarer.

R(O) =
1

k

∑
P∈Nk(O)

D(P )

D(O)
(4)
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Fig. 3. The graspness score histogram of all objects in the 3dnet dataset [24].
Three objects with different graspness scores are shown above, each cylinder
representing an antipodal grasp. The color of the cylinder indicates the grasp
quality of each grasp, ranging from red to green.

Shape Graspness:
We define a shape’s graspness score as the level of difficulty

to find a stable grasp for an object. Firstly, using the Dex-Net
analytical grasp planner [6], a number of antipodal grasps on
a shape’s surface can be sampled. Then, we use robust Ferrari-
Canny [3] to compute each grasp quality Q:

Q = min
w

LQ(w) (5)

where LQ is a local quality metric that measures how effi-
ciently a given wrench w can resist disturbances given applied

forces f and the approximated friction cone FC:

LQ(w) = max
f

||w||
||f ||

s.t. f ∈ FC
(6)

Finally, we use a threshold of 0.002 [25] for the grasp
quality to distinguish whether a grasp is successful or not,
and define the proportion of successful grasps of an object to
all its sampled grasps as its graspness score. The lower the
graspness score, the harder the object is to grasp. Fig. 3 is
the histogram of graspness scores of all objects in the 3dnet
dataset [24]. The lack of objects with a high graspness score
verifies that they are insufficient and need to be generated.

B. Shape Generation

Based on the AE-Critic network and two defined metrics,
we can finally generate shapes leveraging the features of
insufficient data to augment the dataset. The overall pipeline
is shown in Fig. 4.

After calculating the rarity and graspness scores of all
objects, we only select every two objects whose scores are
higher than t% of all scores in each metric as a generation
pair. Then we will have to avoid the feature vectors of
shapes in generation pairs being too close, causing shapes
to be duplicated, or too far apart, which would cause the
intermediate properties to disappear. As this would mean that
the intermediate interpolated shape’s properties are not similar

Fig. 4. The whole pipeline of shape generation for grasping dataset augmentation. The original shapes’ rarity and graspness scores are firstly computed through
outlier detection and grasp-quality criteria. Then, every two high-scoring nearby objects are grouped as a generation pair. Finally, the AE-Critic network is
used for shape generation through interpolation between two shapes’ feature vectors.
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to the generation pair’s properties, we group the nearest N -th
to (N+K)-th neighbors into generation pairs. With these gen-
eration pairs, we linearly interpolate with interpolation weight
α between each generation pair’s feature vectors and decode
the mixed feature vector to a newly generated shape. The
generated shapes, represented in a voxel grid, are converted
to a triangle mesh representation using marching cubes [26]
and smoothing [27].

Up to this point, we leverage the features of shapes with
high rarity and graspness score to generate new shapes and
get a higher quality grasping dataset. The generated number
of augmented shapes depends on the parameters t, N , K and
α.

V. EXPERIMENTS

A. Experiment Setup

All our experiments are based on the 3dnet dataset [24] and
the GQ-CNN [6] grasp planning algorithm. Since our aug-
mentation method only expands the amount of shapes, other
grasping datasets and grasp planning networks can also be
used. We randomly select 1000 shapes as the training dataset
and 363 shapes as the test dataset. Considering the network
is needed to classify the uneven distribution of successful and
failed grasps, we use the Average Precision (AP) score on
the test dataset to measure the performance of a network. To
evaluate the augmentation effect in real-world applications, we
also set up a grasping system with a Franka Emika Panda robot
arm and an Intel Realsense D435 depth camera.

B. Critic Regularization Effect

To compare the effect of Critic regularization on shape
generation, we evaluate the generated shapes’ completeness
by AE and AE-Critic networks. In detail, we first train the
AE network on 3dnet using the Adam [28] optimizer with
a 0.001 learning rate and use the trained AE parameters as
a pre-trained network for AE-Critic, and train AutoEncoder
and Critic in AE-Critic with a 0.0001 and 0.001 learning rate,
respectively. Then, we perform DBSCAN [29], a point cloud
clustering method, for each shape to obtain all their clusters.
All points in one cluster are contiguous, and the cluster with
the highest number of contiguous points is considered to
be the major part of a shape, while the points in the other
clusters are considered to be outlier points. The percentage
of outlier points to all points in a shape is used to evaluate
its completeness; the lower the outlier percentage, the more
complete the shape is. Finally, we generate 409 shapes with
different interpolated weights from 200 randomly selected
shapes in the 3dnet dataset, and calculate the percentage of
the outlier in the generated shapes. The outlier percentages
of two networks based on different interpolated weights are
shown in Fig. 5.

The results show that higher interpolated weights lead to
higher outlier percentages, but the Critic regularization method
can reduce the percentage of outlier points in the generated
objects. The generated objects are shown in Fig. 6, with the
major part of the shapes in green, and their outlier points in
red. And in each set of interpolated shapes, the top row is

Fig. 5. Generated shapes’ outlier percentage comparison between AE and
AE-Critic network on different interpolated weights. Due to the symmetry of
interpolation, we only generate shapes with interpolated weights in the range
[0, 0.5].

generated by AE, and the bottom row is generated by AE-
Critic.

Fig. 6. Example of interpolated data from 3D-Net [24], produced by AE
and the AE-Critic network. The red indicates the outlier points and the green
indicates the major part of the shape. In each set of interpolated objects, the
top row is generated by AE and the bottom row is generated by AE-Critic.

C. Augmentation Ratio and limitation

To find the optimal augmentation ratio and augmentation
limitation, we randomly select 50, 100, and 200 shapes from
1000 training data, and generate new shapes with 1:0, 1:0.5,
1:1, 1:1.5, and 1:2 augmentation ratios. This means that for 50
original shapes, 0, 25, 50, 75, and 100 generated shapes similar
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to both in high rarity and graspness score shapes are used for
augmentation, the same as 100 and 200 shapes. Then the whole
15 augmented datasets are used for GQ-CNN training, and the
15 trained GQ-CNN networks are tested through the same test
dataset mentioned in Section V-A, and their corresponding AP
scores are shown in Fig. 7.

Fig. 7. 15 GQ-CNN networks trained on 15 augmented datasets and their
corresponding AP scores on the same test dataset. The 15 datasets are
augmented by different augmentation ratios and the amount of original
datasets.

Although the results show that our augmentation methods
can improve the accuracy of the network on the test dataset,
the augmentation ratios allowed by different amounts of data
are different. The 50, 100, and 200 data achieve the highest
AP values at 1:0.5, 1:1.5, and 1:2, respectively. This means
that blindly increasing generated data will lead the network
overfitting to the generated data and cause a bad performance
on the original dataset.

D. Improvement from Generated Data

To see the detailed changes brought from our generated
data, we compare the correlation between the selected data
for data generation, the newly generated data, and the overall
network AP improvement on the test dataset caused by training
with the augmented data. Specifically, selected data is the
data with the top 25% rarity or graspness scores from the
randomly selected 200 shapes in the 3dnet dataset. Generated
data is the data generated by leveraging the features of the
selected data and using them for data augmentation. 190 and
219 data are generated from the selected high-scoring rarity
and from graspness data separately. Both the selected and
generated data’s distribution histogram of rarity and graspness
scores are computed for visualization. We also calculate the
AP improvement value of each object with an amount of 363 in
the test dataset mentioned in Section A. The AP improvement
refers to the improvement of the network on the test dataset
after training the GQ-CNN [6] with the augmented data. We

sort them into different rarity and graspness score intervals
and calculate the average AP score of objects in each score
interval. Thus, we can plot the distribution histogram of AP
improvement relative to rarity and graspness scores. For the
convenience of visualization, all histograms normalize the total
number of their distribution to 1 and are plotted together in
Fig. 8.

Fig. 8. The histograms between selected high-scoring data, generated data
and AP improvement on the test dataset with different rarity or graspness
scores.

The histograms show that more selected data will result in
more generated data with the same rarity or graspness score,
which means that the generated data has the same property
as the original selected data to a certain extent. And the
generated data at the same time will lead to a greater AP
score improvement.

E. Real-world Validation

To validate the augmentation effect in the real-world appli-
cations, we augment 200 original shapes with 409 generated
shapes. Both original and generated shapes are the same in
Section V-D. Then two GQ-CNN [6] networks are trained
on the before and after augmentation dataset, and deployed

Fig. 9. The robotic grasping system.
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(a) Grasp success rate comparison (b) All grasp attempt results

Fig. 10. Real-world experiment results. Fig. 10a compares the success rate of each object’s 10 grasp attempts between, before, and after the augmentation GQ-
CNN network. [6]. The average grasp success rate increases from 68% to 86%. Fig 10b shows each object’s 10 grasp attempts’ results produced separately
before and after the augmentation GQ-CNN network. Green and red lines indicate the grasp attempt results before and after the augmentation GQ-CNN
network.

in the grasping system shown in Fig. 9. The D435 depth
camera is fixed 65cm above the grasping platform and eight
everyday objects are selected for grasping. A Panda robot
performs 20 grasp attempts for each object, ten attempts
before and ten after the augmentation GQ-CNN network.
For each grasp attempt, a depth image is captured from a
fixed viewpoint and the object is placed in the same pose.
A grasp is considered successful only when the object is
grasped and placed in the target bin. The ten times grasp
success rate for each object before and after the augmentation
GQ-CNN network is shown in Fig. 10, and the grasping
process is shown in Fig. 11. All the experimental videos
are available at https://youtu.be/Pn6tpSVu5aU. Experimental
results show that the average grasp success rate increases from
68% to 86% using our augmentation method, and validates our
augmentation method in real-world scenarios.

Fig. 11. Grasp process comparison between before and after augmentation
GQ-CNN network [6].

VI. DISCUSSION AND CONCLUSION

A. Discussion

Although our generated shapes can improve the network’s
grasping ability in both simulation and real-world experiments,
there are still some limitations to this paper. First, in terms
of shape generation, either the network structure, shape rep-
resentation method or feature vector dimension may not be
optimal, and a better generation method may result in more
realistic and diverse generated shapes, thus further improving
the quality of the grasping dataset. Second, in terms of shape
selection metrics, the definition and calculation of metrics are
not unique. For example, the size and orientation of objects
are not taken into account in this paper, and real experimental
results can also be used for the calculation of the graspness
metric. Finally, shape generation is now only used once for
data augmentation, but the shape generation process can be
a lifelong process, which means we can continuously use the
features of grasp-failed objects for subdivision interpolation
and shape generation. By learning more and more shapes, the
grasping algorithm may gradually improve its capabilities, and
this lifelong learning method is what we hope to investigate
more in future work.

Meanwhile, compare to our initial conference paper [30], we
also investigate the regularization effect of the Critic network
and the augmentation method effect on real robots in this
paper. And both supplementary experiments have proved the
effectiveness of our methods.

B. Conclusion

In this paper, we present a systematic pipeline for grasping
dataset augmentation. Objects are encoded into feature vectors
using the AE-Critic network, and generated objects, which are
generated by leveraging the features of original high rarity
and graspness score objects, are used to augment the original

https://youtu.be/Pn6tpSVu5aU
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grasping dataset. Experimental results show that our generated
data improves the quality of the original grasping dataset, and
thus improves the ability of the pre-designed learning-based
grasp planning network.
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